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We consider the effects of a nonlinear-non-equilibrium-viscous critical layer on the 
spatial evolution of subsonic and supersonic instability modes on a compressible free 
shear layer. It is shown that the instability wave amplitude is governed by an 
integro-differential equation with cubic-type nonlinearity. Numerical and asymp- 
totic solutions to  this equation show that the amplitude either ends in a singularity 
a t  a finite downstream distance or reaches an equilibrium value, depending on the 
Prandtl number, viscosity law, viscous parameter and a real parameter which is 
determined by the linear inviscid stability theory. A necessary condition for the 
existence of the equilibrium solution is derived, and whether or not this condition is 
met is determined numerically for a wide range of physical parameters including 
both subsonic and supersonic disturbances. It is found that no equilibrium solution 
exists for the subsonic modes unless the temperature ratio of the low-to high-speed 
streams exceeds a critical value, while equilibrium solutions for the most rapidly 
growing supersonic mode exist over most of the parameter range examined. 

1. Introduction 
The stability of compressible flows has received renewed attention lately, primarily 

owing to interest in controlling mixing in high-speed propulsion systems. 
The linear, inviscid, spatial stability properties of a compressible shear layer have 

been studied by Gropengeisser (1969) and more recently by Jackson & Grosch 
(1989a, b ) .  The evolution of the mode with the largest (linear) growth rate is 
normally of greatest interest since this mode will quickly come to dominate the flow 
and be responsible for the onset of nonlinearity. The linear calculations mentioned 
above confirmed earlier work of Dunn & Lin (1955) which indicated that oblique 
waves are important for compressible flows. In  particular, the most rapidly growing 
mode is oblique when the Mach number exceeds about 2. 

The absolute/convective nature of the instability of a compressible shear layer has 
been examined by Pavithran & Redekopp (1989) and Jackson & Grosch (1990). They 
found that shear layers with negative free-stream velocity ratios can be absolutely 
unstable at subsonic Mach numbers. Pavithran & Redekopp (1989) also found that, 
with severe cooling of the low-speed stream, even a coflowing shear layer will become 
absolutely unstable. Although neither of these works considered supersonic flows 
there is a clear trend towards convective instability as the Mach number increases. 

The early stage of the evolution of an instability wave generated by a small- 
amplitude, single-frequency excitation of a convectively unstable plane shear layer 
is well described by linear, inviscid spatial theory. Spreading of the mean flow on the 
long (compared with the wavelength) viscous lengthscale serves to reduce the local 
growth rate while the instability wave amplitude continues to grow. When the 
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amplitude becomes sufficiently large and the growth rate sufficiently small, nonlinear 
effects become important in the ‘ critical layer ’ surrounding the point where the 
phase speed is equal to  the mean flow velocity. When this occurs nonlinear effects 
within the critical layer determine the growth rate of the instability wave in the 
outer region which is otherwise governed by linear dynamics. 

Goldstein & Leib (1989, which we will refer to as I) showed that for a compressible 
shear layer nonlinear critical-layer effects occur at smaller amplitudes than for the 
two-dimensional incompressible case considered by Goldstein & Leib (1988) and 
Goldstein & Hultgren ( 1988) because the temperature fluctuations have an algebraic 
singularity a t  the critical level. The critical-layer dynamics are weakly nonlinear in 
the compressible case in that the nonlinearity appears only as inhomogeneous terms 
in the critical-layer vorticity and energy equations. In  I an analysis was carried out 
for oblique subsonic modes whose critical layer coincides with a generalized inflexion 
point and hence are regular there. It was shown that the instability wave amplitude 
is governed by an integro-differential equation of the form found by Hickernell 
(1984) with coefficients which must be calculated numerically from the linear 
solution. Numerical solutions to the amplitude equation for the inviscid and viscous 
cases were found to behave quite differently, with the former ending in a singularity 
at a finite downstream distance and an equilibrium solution possible for the latter 
when the coefficients lie in certain regions of the parameter space. A calculation of 
the coefficients for one particular case showed that the equilibrium solution is a 
physically realizable one. 

I n  this paper we generalize the analysis of I to the case of supersonic modes with 
singular critical layers. While the analysis of Hickernell (1984) considered modes 
with singular critical layers, these modes are not the most rapidly growing linear 
instabilities and therefore would probably not be observed in practice. For the 
compressible shear layer considered here, however, the numerical calculations of 
Gropengeisser (1969) and Jackson & Grosch (1989a, b)  have demonstrated that a t  
sufficiently high Mach numbers the most rapidly growing mode is a supersonic mode 
with a singular critical layer. There are two such modes which are usually 
characterized according to their phase speeds. The ‘fast’ mode has a phase speed 
which goes to unity as the Mach number approaches infinity while that of the ‘slow’ 
mode goes to zero. 

We further remove the restrictions of unit Prandtl number and linear viscosity - 
temperature relation of I and assess their effects on the critical-layer solution. Also 
we derive an integral condition for the coefficients appearing in the amplitude 
equation and provide numerical results for them over a wide range of physical 
parameters, which includes the subsonic modes considered in I as well as the 
supersonic modes, to  determine the types of solutions possible for cases of physical 
interest. Since these results depend to some extent on the mean flow model chosen, 
we compare results obtained for a number of models to determine the effect on our 
conclusions. 

In  $2 the problem is formulated and the outer solution is obtained. As in I we use 
the pressure as the basic dependent variable, with the ‘ Squire coordinates ’ in the 
directions along and normal to the direction of wave propagation as independent 
variables. In  these coordinates the solution is independent of the ‘ spanwise ’ 
coordinate. The primary result of the outer solution is the ‘streamwise’ velocity 
jump across the critical layer. 

I n  $3  the solution in the critical layer is obtained in terms of the ‘spanwise 
vorticity ’ and the temperature. Matching the velocity jumps calculated from the 



Nonlinear evolution of subsonic and supersonic disturbances 553 

inner and outer solutions yields the Hickernell (1984)-type evolution equation for the 
amplitude evolution. 

I n  $4 asymptotic solutions to the amplitude equation are derived and a necessary 
condition for the existence of an equilibrium solution is obtained. In $ 5  we present 
and discuss the numerical results. 

2. Formulation and outer solution 
We consider the flow of an ideal gas between parallel streams with uniform 

temperatures T(l) ,  T(2) and velocities U(I)  > U2). The flow quantities in the high- 
speed stream (denoted by superscript 1) are used as reference quantities. 

We define the Mach number and Reynolds number as 

M = U(l)/C(l) (2.1) 

and Re = U(l)S/dl), (2.2) 

C(1) = (kWT(1)); (2.3) 

respectively, where S is a measure of the shear-layer thickness, 

and d') are the speed of sound and kinematic viscosity in the high-speed stream 
respectively, k is the isentropic exponent of the gas and W is the gas constant. 

The local Prandtl number, which we will assume to be an order-one constant, is 

wherep, c p  and K are the normalized viscosity, specific heat and thermal conductivity, 
respectively. We suppose that the normalized viscosity has a power-law dependence 
on the temperature, namely 

where n is a constant. 
As in I we consider an oblique (three-dimensional) instability wave growing in its 

direction of propagation on the otherwise steady shear flow formed by the two 
streams. The linear neutral Strouhal number, streamwise wavenumber and spanwise 
wavenumber of the instability wave are denoted by So, a. and Po respectively. As 
shown in I nonlinear effects first become important in the critical layer when the local 
Strouhal number S differs from the linear neutral value by an amount of order E; so 
that 

p = T", (2.5) 

s = S O + B ~ S l ,  (2.6) 

where S, < 0 is an order-one constant and B 4 1 is the order of the instability wave 
amplitude. We fix the origin of the 5 (streamwise), y (cross-stream), z (spanwise) 
coordinate system to be in this nonlinear region. Time is denoted by t .  

We wish to consider the case where viscous effects are of the same order as the 
nonlinearity within the critical layer. For this to occur the Reynolds number must 

(2.7) 
scale with the amplitude as 

Re N d. 
IfRe is chosen to be smaller than O(s-%) the critical layer will be dominated by viscous 
effects; if it is larger viscosity will not influence the solution. Then the 'viscous 
parameter ' 

1 A = -  
Re d 
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is an order-one constant which gives a measure of the importance of the viscous 
effects. The inviscid case is obtained by setting h = 0. 

It is convenient t o  work in the oblique coordinate system 

%= x cos 8+2 sin 8- u, cos ot, (2.9) 
z = -x sin 8+ z cos 8, (2.10) 

where 19 = tan-'po/uo is the angle the wave makes with the mean flow direction, 
U, cos 8 = So/& is the neutral phase speed, and 

ti = (u;+p;)i. (2.11) 

a = ucos8+wsin%-U,cos8, (2.12) 

The velocity components {a, v, a} in these coordinates are related to those in the 
original coordinates by 

a = -usinO+wcosO. (2.13) 

2.1. The slowly varying mean flow 
We assume that the mean pressure is constant across the shear layer so that for an 
ideal gas the mean density p and temperature T are related by 

pT= 1.  (2.14) 

I n  the local nonlinear region the instability wave evolves in its propagation 

Z~ = e;(xcosO+zsin8), (2.15) 

direction on the long lengthscale 

while the mean flow spreads on the longer viscous lengthscale 

x2 = x/Re = eAz1  cos 8 + efzsin 8. (2.16) 

Locally then, we may expand the mean flow in a Taylor series about the origin of 

(2.17) 

(2.18) 
w(y,x2) = - ( U ( y ) + U , ) s ~ n 8 - a ( y ) s i n 8 { s ~ h ~ l c o s 8 + ~ ~ ~ ~ s i n 8 } + .  .., (2.19) 

(2.20) 

where U ( y ) + U ,  is the mean velocity (in the stationary frame) at  the origin, 
P =  R e v  and the functions a, b,  d can be determined from the boundary-layer 
equations. Only the leading terms in the expansions (2.17)-(2.20) influence the 
velocity jump across the critical layer so that for our purposes it is enough to specify 
a velocity and temperature profile a t  the origin. 

2.2. The solution outside the critical layer 

the streamwise coordinate as 

O(y, x2) = ~ ( y )  cos 8 + a(y)  cos 8{efhz1 cos 6 + ethzsin 81 + . . . , 
P(y, x2) = c(y)  + b ( y )  {&W1 cos 8+ ethzsin 8} + . . . , 

T(y, x2) = T,(y) + d(y) {$hz, cos 8 +ehzsin 8) + . . . , 

The solution outside the critical layer expands like 

ti = U ( y )  cosS+$a(y) hzl cos2 8 + e  Re [F(y)At(zl) e"<] +efa2+. . . , 
v = - E& Re [i@(y) At&) ei"c] + etv, + . . . , 

(2.21) 

(2.22) 
t~ = - sin 8( U, + U(y)) - da(y) sin 8 cos 8 + e Re [ Y(y) A t(zl) eizc] + efw, + . . . , 

(2.23) 

(2.24) 

p = 1 +eFcM2cos8Re[17(y)At(zl)eiz~]+e~p2+..., (2.25) 

T = T,(y) + efd(y) hzl cos 8 + e Re [O(y) A t(zl) eizc] + ef02 + . . . , 
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where g = 6-s, & t / E  (2.26) 

and the unknown function At will be determined by matching with the flow in the 
critical layer. Matching with the upstream linear solution requires 

At  - atexp (-S, Vc ~zJ2) as E, +- m ,  (2.27) 

where i$S6 Vci? is a scaled wavenumber whose imaginary part is minus the linear 
growth rate of the instability wave. 

The O ( E ~ )  terms were introduced in order to match with the critical-layer solution 
and accounts for the slowly varying mean flow terms. 

To the required order of approximation the outer solution is linear and the 
functions F ,  @, Y, 8 and 17 are determined by 

&'(U-C)'F = -T,[Z2(U-c)17+ U'Dn], (2.28) 
Z 2 ( U - c ) @  =-Eon, (2.29) 

&2(U-c)2Y = T, U'tanODZ7, (2.30) 
(2.31) 

- 

cos e( u- c )  8 = To @ + (k- i)M2 COS2,( u-c) T, 17, 

where 

(U-c)'D- T, D17-&2[T,-M2~os2r9(U-c)2]17= 0, 
( U -  c)2 

(2.32) 

(2.33) 

(2.34) 

the primes denote differentiation with respect to the relevant variables and we have 

(2.35) 

These functions have expansions of the form F = F, + dF3+.  . . , etc. Substituting 

Ln1 = 0, (2.36) 
these into (2.28)-(2.34) we obtain 

u2M2 cos2 O)]  17,, (2.37) i-3- 
dAt 

(2.38) 

where 

dA+ 
cos e dz, 

- ~ ( U c c o s B - - i S I A ~  ._ 

cos2 e (2.40) 

is the linear compressible Rayleigh operator. 
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Our interest is in the limiting form of the solutions to (2.36)-(2.40) near the critical 
level where U(y) = 0, which, without loss of generality, we can suppose to lie a t  
y = 0. The expansion for 111 can be obtained in a standard way by the method of 
Frobenius. This was done in I for the case when the critical point coincides with one 
of the generalized inflexion points where (U'/To)' = 0. It was shown by Lees & Lin 
(1946) that this is a necessary condition for the existence of a subsonic neutral mode. 
The critical point is then a regular singular point for the compressible Rayleigh 
equation and the neutral mode is said to  be regular. For supersonic modes the critical 
point need not coincide with a generalized inflexion point. Logarithmic terms must 
then be included in the Frobenius series to obtain two linearly independent solutions 
to (2.36). This is the singular neutral mode solution. The two linearly independent 
solutions to (2.36) in the singular case are 

and 

as y+O, where 

Then 

(2.42) 

(2.44) 

where b: are constants, f refers to the regions above/below the critical layer and the 
jump b:-b; will be determined by the flow in the critical layer. Note that for the 
regular modes 6: = b;. 

Using (2.40)-(2.43) in (2.37) and the corresponding equations for Gl, 0, and Yl 
shows that 

2 T, U; G - 1 -  --- ylnIyl+ - --- -b: y +  . . . ,  ' -  (2 2) [3(Tc &) ] 
(2.45) 

(2.46) 

and Y l = t a n O  +b:+--- 2Uc T, + .. .  (2.48) '"I 
as y+O'. 
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The general solution to (2.37) can be written as 

where 

and 

bz  and c2, It are constants, and np, and nP9 are particular solutions of 

fip, 2 = np, 2 + c2, f i ( 1 )  +$? (b: +is) 2 U, -(2), 

and [ 
(MU cos L n p , 2 = T ,  1 -  

T,  U,' 
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(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

whose behaviour near y = O* can be found from (2.41) and (2.42) and the method of 
variation of parameters, but which are in general unbounded a t  infinity. 

Using these in (2.39) gives that 
1 

A tJ'3 = + el ( El) In I y 1 + e2 ( z1) + 2% * (b,i - b: ) Y dzl 

b:)  + . . . (2.54) 
ti cos 8 

as y+O*. 
The constants appearing in the solutions (2.44), (2.50) and (2.51) can, in principle, 

be determined by applying appropriate boundary conditions a t  infinity. These 
require that the subsonic modes decay exponentially while the supersonic modes are 
outgoing. An alternative condition can be derived which does not require a complete 
solution to  the O(& problem for the pressure but only its local behaviour near the 
critical layer. The procedure has been outlined by Redekopp (1977), among others, 
and when applied to  the present problem yields 

(2.55) 

where denotes the Cauchy principle value integral. 
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It is worth noting some of the differences between the outer solutions for the 
singular and regular problems. Equations (2.45) and (2.48) show that there is now a 
jump in the 'streamwise' and 'crossflow' velocity components a t  O(E)  in addition to 
the one a t  O(&. Also the O(&) 'streamwise' velocity component now has an algebraic 
singularity at the critical level from equation (2.54). 

3. The critical layer 
As shown in I the appropriate scaled transverse coordinate in the critical layer is 

Y = y/&t (3.1) 

The form of the expansions of the critical-layer solution is obtained by re- 
expanding the inner limit of the outer solution obtained in the previous section in 
terms of this variable. These expansions, which provide the matching conditions for 
the critical-layer solution, are given in Appendix A. They suggest that  the critical- 
layer solution has an expansion of the form 

u = €;u:: cos BY + EQu; coS BP + A E ~  cos2 el + €ii1 

+d[ii, +ac hzsin Bcos 81 + e k 3  + . . . , (3.2) 

v = -€&Re [iAteiEc] + € : A t  +eC1 + . . . , 
w = - U, sin 8- e ; q  sin BY + &Go + e h l  + €6, + $[Gg -a, AZsin2 81 + . . . , 

T = T, +$T; Y+@, +dF1 +€z + . . . , 
p = 1 +€S1([, E l )  +&,([, E l )  +&j3+. . . , 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where we have put v = e-61. 

order of approximation, can be written as 
The momentum and energy equations inside the critical layer, to  the required 

heiT a 
EJ(U2, + w$) + -- (T"TY)> 

DT (k-1)TDp AT"+' 
and -- =W(k-l)- 

Dt kp Dt P Pro ay 

where we have put 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

and subscripts denote partial derivatives. 
The ultimate aim of the critical-layer analysis is to  calculate the velocity jump 

across the critical layer which, when matched with the velocity jump from the outer 
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solution, will yield an equation for the nonlinear evolution of the instability wave 
amplitude. To this end i t  is convenient to use the 'spanwise' vorticity 

(3.12) 

as a dependent variable. The critical-layer vorticity equation can be written as 
2 

c-5 W(k- 1) 
Q m - =  -- [(T, + f%z,) PY - T,@ + €4,,,1- DQ Q D p  

Dt kpDt ' kM2p P 

(3.13) 

Substituting the expansions (3.2)-(3.6) into (3.7)-(3.13) we obtain a sequence of 
partial differential equations which can be written as 

and (3.15) 

for n = 1 ,  2, 3 where we have put 

q = G, !q = % - ; T y + t y ) z 1 ,  (3.16a, b )  

( 3 . 1 6 ~ )  

and the inhomogeneous terms .9-n-l and 4 along with the constants ti'), qil) etc. are 
given in Appendix B. Since go + 1 the linear differential operators for the vorticity 
and temperature equations are not identical. We also note that when l/ao =+ n we 
need to obtain the solution for the temperature to O(a)  in order to determine the O ( d )  
velocity jump across the critical layer (see equation (B 6)).  

Integrating (3.17a, c) and using the matching conditions in Appendix A shows 
that 

(3.18) 

and 

Equation (3.19) will yield an equation forAt once the solutions to (3.14) and (3.15) 
are obtained. 
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To facilitate the solution we introduce the following normalized variables : 

z = -A$ u ' z  -To, 

7 = -2a(Y-S1/(aU:, cosB))/S, u,, 
x = 015-x,, 

2 1  c 1  

A = 4E2At eiXo/( U, Sl)2Uc, 
Q(,) = ti2 cos B ~ , / S ~  Uc q, 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

where the coordinate shifts Z, and X, are chosen so that 

A+exp(Fz+i@,) as z+-m (3.25) 

and $, is a real phase shift which will be specified later. 
For the purpose of deriving the equation for the instability wave amplitude from 

(3.19) we need only determine the fundamental component of Q ( 3 ) .  Furthermore, we 
need only consider those terms in the solution which make non-zero contributions to 
the integral in (3.19). To accomplish this we look for solutions of the form 

Q ,  = Re [ C Q ~ ) ( z ,  7) eimx] 

T, = Re C Tg)(z,7)eimx . (3.27) 

The differential equations for the harmonic components, obtained by substituting 
(3.26) and (3.27), along with (3.20)-(3.24) into (3.14) and (3.15), are solved by 
successive integration of the differential equations in the same way as in I using the 
Fourier transform method of Hickernell (1984). 

m 
(3.26) 

m--m 

[ m  1 and 
m=-m 

Introducing the Fourier transform pair 

the first few of these solutions are found to  be 

(3.28) 

(3.29) 

x exp (~3/3)[1-cxp(hK3(1/c,-1)/3)]}H( -Ir;)A(z+K), (3.30) 
J 

- inTh U, S ,  
exp ( -hK2[3(z-Z)-K]/3a,)A*(Z)A(Z+K)KH( -K)  dP 

2Zcos28 [a 
fy = 

and (3.31) 

exp ( -hK2[3(z-Z)-K]/3)A*(P)A(Z+K)KH( - K )  

(3.32) 
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where H(K)  is the Heaviside step function and 

- - 8hT;+lE2 
A =  uc cos 8( uc S1)3 

is a normalized viscous parameter. 
From (3.30) we find that 

(3.33) 

(3.34) 

Then comparing (3.34) and (3.18) and using (3.20)-(3.24) gives the O(s) jump in the 
streamwise velocity 

(3.35) 

The complete solution for 0i3) is fairly complicated. However, most of the terms 
in the solution make no contribution to the integral in (3.19). The only terms which 
make non-zero contributions to  the velocity jump are the linear terms and terms 
resulting from the interaction of the mean flow change with the fundamental as in 
I. Here there are additional linear terms proportional to ((Tc/$) - ( Ui/Uc)) and the 
additional nonlinear term from the mean flow change - fundamental interaction in 
the solution for the O ( E )  temperature. When only these terms are substituted into 
(3.19) using (3.20)-(3.24) we obtain 

J - w J - w  

x A (2) A (i) A *( 0 + P - Z) (Z- P)2X (z, f , 0 )  d0 dx, 
where 

(3.36) 

x exp ( -x(l/v0- 1 )  ( ~ - 2 ) ~ [ 3 ( ~ - 0 ) - 2 ( ~ - 2 ) ] / 3 )  

x exp ( -x(l/ao- 1) ( z - f ) 2 [ 3 ( Z - G ) - ( ( z - P ) ] / 3 ) .  (3.37) 

Comparing these with (3.19) and using (3.20)-(3.24) yields the amplitude evolution 
equation 

Y A z = y A r  Iw exp ( -x(Z-2)2[3(~-2)- ( ~ - f ) ] / 3 )  K -m 

x A ( f )  A (2) A *(i + P - Z) (z- f ) 2 X ( Z ,  f ,  i) d i  dP, (3.38) 
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where 

(3.39) 
and 

(3.40) 

are complex constants which are fully determined by (2.55), (2.56) and the solution 
to the linear, inviscid Rayleigh problem. 

Equation (3.38) is the desired result. 

3.1. Limiting forms of the amplitude equation 
There are a number of limiting forms of equation (3.38) which are of particular 
interest and we discuss these cases individually. 

3.1.1. Case I :  go = n = 1 

In  analyses of compressible flows the Prandtl number is often taken to be unity for 
simplicity. Taking n = 1 in (2.5) corresponds to  the Chapman viscosity law. For this 
case we have 

2- = 1.  (3.41) 

The amplitude evolution equation then becomes identical to that obtained in I but 
the complex coefficients have the generalized definitions (3.39) and (3.40). Therefore 
the amplitude equation derived in I also describes the evolution of supersonic modes 
for go = n = 1 if (3.45) and (3.46) of I are replaced by (3.39) and (3.40). The subsonic 
case is recovered if we let Tc/T, = U;/U,. 

3.1.2. Case 2: go = 1, n arbitrary 
For this case we obtain 

.x = l - i l h ( Z - P ) 2 [ 3 ( X - i ) - ( Z - x " ) ] ,  (3.42) 

where (3.43) 

The power-law dependence of viscosity on temperature produces an algebraic viscous 
term in addition to the exponential one. Note that this term also appears for the 
case of constant viscosity (n = 0) and only vanishes for the Chapman viscosity law 
(n = 1). For subsonic modes we have that 

a = i ( 1 - n )  (3.44) 

and, since n is less than one for realistic viscosity laws, 
supersonic modes ?i can be either positive or negative. 

is always positive. For 

4. Asymptotic solutions to the amplitude equation 
The results of I and preliminary numerical solutions of (3.38) show that the 

ultimate state of the solution for the amplitude equation can be of two types. 
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If the viscous parameter h is zero or sufficiently small the solution develops a 
singularity at  a finite downstream distance. The source of this large increase in the 
instability wave amplitude is the vorticity production due to compressibility effects. 
The appearance and form of the singularity indicate that the present scaling 
eventually breaks down for these cases and that the subsequent evolution is 
governed by the full Euler equations (see I). For certain parameter ranges this 
singularity can be eliminated if x is large enough and the solution goes to a finite- 
amplitude equilibrium. 

The forms of these asymptotic solutions are now described. 

4.1. Singular solution 
For the singular case the asymptotic solution of (3.38) is (to leading order) the same 
as that given in I, which is 

where zS and u are real constants and a is a complex constant. 
The constants u and a are determined from the real and imaginary parts of 

where (4.3) 

4.2. Equilibrium solution 
The exponential term in the amplitude equation serves to damp out the history 
effects of the convolution integral and make the solution a more local one. As Z+ co , 
if the solution does not first become singular, the integral is dominated by the 
contributions near z and the evolution equation becomes 

(4.4) 

where 

(4.5) 
We therefore have that 

and (4.7) 

provided Re (R /y )  Q > 0. (4.8) 
The limiting forms of Q corresponding to the special cases in $3.1 are 

Q =  1 for u O = n =  1,  
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and Q = 1-4a for uo = 1, arbitrary n. 

Equation (4.8) is a necessary condition for the existence of an equilibrium solution 
to (3.38). In  order for the amplitude to reach the equilibrium solution when (4.8) is 
satisfied the normalized viscous parameter x must be large enough to damp out the 
history effects in the integral of (3.38). The ultimate form of the solution for any 
given case must be found by numerical solution of the amplitude equation. 

5. Numerical results and discussion 

the phase factor q40 in (3.25) is chosen so that 
In I the normalized variables A/(lylild2) and 14 E - E ~  were introduced with zo and 

to show that the solutions to  (3.38) can be characterized by the real parameters arg 
K, arg y and h/l@ for subsonic modes when u,, = 1 and n = 1. Numerical solutions 
were presented in I for In [ ~ A ~ / ( ~ - y ~ ~ ~ ~ z ) ]  and the real and imaginary parts of A'Id/A ws. 
14z-zo for a number of combinations of argK, argy and x/Id3. Note that the 
solutions presented in I are in terms of these normalized variables rather than those 
shown on the captions. 

If instead the normalized varibles, 

(5.2) 

7 = 2Kr z- zo (5.3) 

are introduced, where Fr = Re(K), with z0 and q40 chosen so that 

(5.4) 

it  is found tha! the solutions to  (3.38) can be characterized by two real parameters 
arg(F/y) and h = x/(2Kr)3 when uo = 1 and n = 1 for both subsonic and supersonic 
modes. In  particular this shows that the inviscid solutions to the amplitude equation 
can be completely characterized by a one-parameter family of curves for both 
subsonic and supersonic modes. These solutions are shown as the solid curves in 
figure 1 for a number of values of arg (K/y). The dashed curves are the asymptotic 
solutions from (4.1). For convenience in presenting the viscous solutions below we 
have plotted lnIBI+b. We show solutions only for 7c < arg(K/y) < 0 since 

All the inviscid solutions end in a singularity at a finite downstream distance except 
the case arg (K/ly) = 0 which we will show to be a physically unrealizable parameter 
value. For small values of arg (F/ly) the solution goes to the asymptotic one through 
a series of oscillations whose amplitude decreases as the singularity is approached. 
These oscillations are symptomatic of an energy exchange between the fundamental 
instability wave and the mean flow, higher harmonics generated by a critical-layer 
nonlinearity, or both. At larger values of arg(F/y) the nonlinear term always 
augments the growth of the fundamental. 

In figure 2 a set of solutions is shown for the case when arg (C/y) = in with f i  = 0 

B(7, [K/YI*) = B*@, W). 
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FIGURE 1.  Normalized instability wave amplitude B(T) vs. 7 for various arg (i?/y), = 0. 
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FIGURE 2. Normalized instability wave amplitude B(T) vs. 7 for various A ,  arg (i?/y) = in, iE = 0. 
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FIQURE 3. Normalized instability wave amplitude B(T)  us. 7 for various R, arg ( ~ / ? l y )  = in, A = 5. 

7 

for a number of values of i. For this case an equilibrium solution is possible and the 
numerical results show that it is obtained when the normalized viscous parameter is 
sufficiently large. 

Figures 3-5 show the dependence of the solution on the normalized viscosity- 
temperature law parameter A. They show that the ultimate form of the solution can 
be quite different depending on the sign and magnitude of A. Figure 3 shows a case 
where the solution reaches the equilibrium solution when = 0 but becomes singular 
as A is increased. Figures 4 and 5 show that a solution whiFh is singular for A = 0 can 
reach the equilibrium solution with larger f i  but only if A is sufficiently large. 

The parameters appearing in the amplitude evolution equation can be calculated 
from (2.55), (2.56), (3.39), (3.40) and the solution to the linear, inviscid Rayleigh 
problem (2.36) with appropriate boundary conditions. It is of particular interest to 
know, given a set of physical parameters, whether the necessary condition for the 
existence of an equilibrium solution, given by (4.8), is met. 

For the linear calculations a transformation was made to the Howarth- 
Dorodnitzyn variable 

ru 1 

r" = J, $dyY. (5.5) 

For r, = 1 and n = 1 the mean momentum and energy equations decouple and the 
temperature can be expressed in terms of the velocity O(q) by the Crocco relation 

T, = [+(k - l)WO(r") { 1 - U(71")) + 0(71"), (5.6) 

where BT is the ratio of the slow-stream to the fast-stream temperatures. In  all the 
calculations we have set k = 1.4 and considered only parameter values for which the 
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FIGURE 4. Normalized instability wave amplitude 4 7 )  us. 7 for various ii, arg (i?/ly) = fn, h = 5.  
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FIGURE 5. Normalized instability wave applitude B(7) us. 7 for various ii, erg ( i?/y) = in, 
h = 50. 
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shear layer is convectively unstable (Pavithran & Redekopp 1989 ; Jackson & Grosch 

In  the first set of results presented we take the mean velocity to be a tanh in the 
1990). 

q variable : 
(5.7) 

In  figures fj-8 values of the real parameter arg (K/y) are plotted as a function of Mach 
number for a number of obliqueness angles with PT = i, 2 and 1 respectively. The 
solid curves are results for the subsonic modes while those for the slow and fast 
supersonic modes are given by the short and long dashed curves, respectively. Recall 
that the necessary condition for an equilibrium solution to  exist when a, = n = 1 is 
- ix < arg ( ~ / y )  < $. 

For PT = i, figure 6 shows that for the subsonic mode arg (F/y) is greater than in 
for Mach numbers less than about 2, decreases with increasing it1 and crosses over 
into the range where equilibration is possible at a Mach number which increases with 
obliqueness angle. For the slow supersonic mode, which is the most rapidly growing 
of the two supersonic modes a t  this temperature ratio, arg (i?/y) lies between 0 and 
+n over most of the Mach number range but exceeds i$ a t  the very high Mach 
numbers. Smaller obliqueness angles require a larger Mach number for this to occur. 
The behaviour of the fast supersonic mode is quite different, however. When this 
mode first appears arg (Fly) is between in and n and remains relatively constant as 
the Mach number is increased until there is a jump of x a t  a particular Mach number. 
At this Mach number IF/yl is zero and the nonlinear critical-layer effects vanish 
entirely. At this point there is a transition from the singular to a possible equilibrium 

U(q) = i( 1 + tanh (q) ) .  
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FIGURE 9. Arg ( F / / y )  ws. Mach number for /3, = 4 and various obliqueness angles, Lock profile : 
subsonic (solid), slow supersonic (short dashed) and fast supersonic (long dashed) modes. 
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FIGURE 10. Arg(i?/ly) us. Mach number for PT = 2 and various obliqueness angles, Lock profile: 
subsonic (solid), slow supersonic (short dashed) and fast supersonic (long dashed) modes. 
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FIGURE 1 1 .  Arg (K/ly) ws. Mach number for p, = 1 and various obliqueness angles, Lock profile: 
subsonic (solid), slow supersonic (short dashed) and fast supersonic (long dashed) modes. 
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FIGURE 12. Generalized equilibrium criterion for two-dimensional subsonic mode, 
p, = a for different mean flow models. 
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FIQURE 13. Generalized equilibrium criterion for two-dimensional mode, /3, = 2 for different 
mean flow models. 

solution for the instability wave amplitude. The Mach number a t  which this occurs 
increases with increasing 8. 

For PT = 2 (figure 7)  arg (F/y)  is bounded between -in and 0 for the subsonic and 
fast supersonic modes (the latter being the most rapidly growing supersonic mode at  
this p,). Since the absolute value of arg (e / y )  is always less than fn for these modes 
we would expect, from figure 1, to see oscillations in the amplitude to precede the 
inviscid singularity. For the slow supersonic mode no equilibrium solution exists 
until the Mach number exceeds a critical value (which increase with obliqueness 
angle) a t  which IF/yl is zero. This behaviour is similar to that of the fast supersonic 
mode when PT = i. 

When PT = 1 the symmetry properties of the tanh-profile cause IF/yl to be zero for 
the subsonic mode at all obliqueness angles and hence there are no nonlinear effects 
of the type considered here. For the supersonic modes, however. the symmetry is 
broken and the nonlinear effects are present. Figure 8 shows that arg(K/y) lies 
between &in for the two supersonic modes over the entire Mach-number range 
calculated with positive values for the slow mode and negative for the fast. 

The results in figures 6-8 indicate that, for the subsonic modes, for Mach numbers 
less than around 2 ,  there is a critical temperature ratio below which equilibrium 
solutions do not exist and the explosive growth of the instability wave will always 
occur. For the tanh profile the critical temperature ratio is 1. The results for the most 
rapidly growing supersonic mode, on the other hand, show that an equilibrium 
solution is possible in all cases except a t  very high Mach numbers and low 
temperature ratios. Note that the exceptional case of arg ( F / y )  = 0 is never 
encountered in any of the results obtained here. 
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FIGURE 14. Generalized equilibrium criterion for two-dimensional slow supersonic mode, 
/3, = t for different mean flow models. 

In order to determine the effect of the mean flow model on the conclusions reached 
above we repeated some of the linear calculations using different models. In figures 
9-1 1 we show results for the same cases as above but with the similarity solution of 
Lock (1951) for the mean velocity profile. As these figures show, the tanh and Lock 
profiles give results which are in qualitative agreement. The only significant 
difference is that the asymmetry of the Lock profile allows the subsonic modes to 
exhibit nonlinear effects for the PT = 1 case. The value of arg ( i ~ / y )  lies between -+K 
and 0 for these modes. This indicates that the critical temperature ratio for an 
equilibrium solution to exist for subsonic modes with Mach number less than about 
2 is somewhat less than 1 for the Lock profile. 

For Prandtl number different from unity and/or a viscosity law other than 
Chapman’s the mean velocity and temperature profiles must be obtained by 
simultaneous solution of the mean momentum and energy equations. We have 
computed results for the case of Prandtl number of 0.7 and n = $. The latter is meant 
to approximate the Sutherland viscosity law (Schlichting 1979, p. 329). 

In  figures 12 and 13 the general equilibrium criterion is plotted for the two- 
dimensional subsonic mode with PT = + and 2 respectively, for four choices of mean 
flow model. These figures show that the different mean flow models produce 
qualitatively similar results for the subsonic mode. In particular, all the models 
predict that the equilibrium solution does not exist for PT = + but does exist for 
PT = 2. The critical temperature ratio above which the equilibrium solution exists, 
however, depends on the mean velocity and temperature profiles used. 

Figure 14 shows results using the same mean flow models for the slow supersonic 
two-dimensional mode with PT = +. The results obtained by putting r,, = 1 are 

19-2 
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FIGCRE 15. Generalized equilibrium criterion for two-dimensional fast supersonic mode, 
/3, = 2 for different mean flow models. 

M 

qualitatively similar over the Mach-number range shown but the case uo = 0.7, 
n = i behaves quite differently : the equilibrium solution cannot be obtained until the 
Mach number is about 2.75. The different behaviour for this mean flow model can 
perhaps be explained by the behaviour of the linear neutral solution for this case. 

Jackson & Grosch (1989b) found that the temperature ratio at which there is a 
saddle point in the (O(+j',),M)-plane plays an important role in the behaviour of the 
linear neutral solutions. They showed that the saddle-point temperature ratio 
depended on the mean flow model and, in particular, was strongly influenced by the 
Prandtl number. The value of PT = is lcss than the saddle-point value for the tanh 
and Lock profiles with uo = 1 (and also presumably for the go = 1, n = case) but is 
greater than the saddle-point value for go = 0.7 with the Sutherland viscosity law. 
Since the value of the saddle-point temperature ratio is related to  the symmetry, or 
lack thereof, of the mean profiles a t  the critical point it also plays an important role 
in the nonlinear evolution of the instabilities. 

Results for the fast supersonic two-dimensional mode with PT = 2 are shown in 
figure 15. There is qualitative agreement for all the mean flow models in this case. 

The results presented above indicate that, generally speaking, cooling the low- 
speed stream and decreasing the Mach number has a destabilizing influence on the 
nonlinear evolution of the subsonic modes since only the explosive-growth-type 
solution for the amplitude is possible. On the other hand increasing PT and M 
stabilizes the evolution in the sense that an equilibrium solution becomes possible. 
The stabilizing/destabilizing influence of these parameters is similar to that found 
for the linear spatial theory (Gropengeisser 1969; Jackson & Grosch 1989a, 6 ) .  For 
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supersonic modes it is possible for the reverse to occur, as figures 6 and 7 show. 
Cooling the low-speed stream is stabilizing for the slow supersonic mode for Mach 
numbers up to about five. 

The author would like to thank Drs M. E. Goldstein and Lennart S. Hultgren for 
helpful discussions on this work. 

Appendix A. The inner limit of the outer solution 

in this Appendix : 

u = s% u:: cos BY + s i [ + c  cos By2 +a, hz1 cos2 01 

The inner limit of the outer solution in terms of the critical layer variable is given 

v = -sERe [;At eiuC] +&pc + . . . , 
tan 8 

Y 
zz = - Uc sin 8 - e g c  sin BY - €5 - Re [At ei"c] - eg[iq y2 sin B 

+a, Azl cos B sin B] - e ! [ q P  5 sin 8 +a, &sin2 B +a: YAzl sin 8 cos 191 + . . . , (A 3) 

T = T,+E~T; Y+d  T: Re   ate^] + e i + c  
u, cos e y  

1 +cRe[{&[ -(2-z)ln[fl+5E-b:+---- 2 T, F; 7u; 
T: 6Uc 

+ (k- 1)M2 cos BU, Atei@ + . . . , \ I  

- 2i~U:,  - c2, .... ( A 5 )  - 
T, dzl 
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Appendix B. The inhomogeneous terms and some constants in the critical- 
layer equations 

The inhomogeneous terms in the critical-layer equations (3.14) and (3.15) are 

Re[iAtei"c]-AUccosBT; 

+- Re Uc cos 
Yc (" 3u; T;) [( 

+-%-2c';, q 

x ReiAtei*c-L&,+Acos8sin8(2M2(L-i) ~ z T ; - a c ) d o y  

- 4nAT; Ul: cos 81 Gy - AT; T[ (n + 1 ) Yolyy + (2n + 1) &,,I, (B 6) 

where 

and 
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are linear differential operators and Go is determined from the solution of 

LGo = -ccU:,sin8Re[iAteiac]. (B 9) 

The constants defined in (3 .16)  and (3 .17)  are 

and 
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